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p,,

P.

q,=

radius of shell

elements of matrix (A)

coefficients of power series

matrix

coefficients of power series

coefficients of power series

coefficients of power series'

arbitrary constants

Eh:_/12(1-v _-)

Young's modulus

power series

thickness of shell

unit horizontal edge force

differential operator

meridional bending moment at edge

unit meridional, circumferential bending

moment

power series function

power series index

unit meridional, circumferential forces

power series function

power series function

power series function

power series function
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O_

R

8

U

I)

V

W

X_ Xb

Z

a, fl

3

E;o) {o1, E o

On

F

#

4,, ¢b

power series function

unit transverse shear force

vertical resultant of external loading

index of power series

solutions of the differential equation

aQ¢,

meridional displacement

rotation of the meridional tangent

radial displacement

sinZ_, sin"q_b

U sin q)

physical constants

coefficients of power series

horizontal displacement at edge

meridional, ciremnferential middle surface
strain

power series function

Poisson's ratio

polar angle, polar angle at edge

power series
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ABSTRACT

The solution of the "exact" equation of equilibrium of an axisym-

metrically loaded, thin, spherical shell is presented in the form of power

series. These series are computed, and the resulting theory compared

with the results of shallow shell and quasi-cylindrical theories for the

following two cases:

1. Influence coefficients of a comp]ete edge-loaded shell

2. Stresses and displacements of a shell loaded at the apex with a

concentrated radial force

I. INTRODUCTION

The problem of the bending of a thin spherical shell

by axisymmetric loads has been formulated and formally

solved according to Ref. 1 by L. Bolle in 1915. However,

the range of parameters investigated (p < 10) did not

correspond to what is currently regarded as a thin shell.

Unfortunately, as has been remarked by many authors,

the power series solution for the range of parameters

corresponding to a thin shell (p > 10) is very slowly con-

vergent. As a result, a number of approximate solutions

have been formulated in terms of more easily evaluated

functions. It is the purpose of this Report to extend the

calculations into the thin shell range and hence develop

a criterion for comparing the approximate theories. The

notation used will be that of Ref. 1 and the appropriate

sign convention is presented in Fig. I.

de

Fig. 1. Sign convention
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il. GENERAL THEORY

As is well known (see Ref. 1), the axisymmetric bend-
ing of a thin spherical shell of constant thickness is

described by the following set of differential equations:

where

aL(U) + vU = EahV

L(

With

_L(v) - ,v -
- Ua

D

U = aQ9

(o+
V=

a

and the operator L is defined as

) = aLd4"" ( ]) + cot_ _- ( ) - cot 2¢

I_"--Eh va , p2-- atx2
D a _ 2

both Eq. (1) and (2) can be reduced to the form

LL(U) + #'U = 0

Further, as

LL( ) +_'= (L+i/)(L--i/-)

it is apparent that

U = Ui + U2

where U1, U_ are the solutions of

(L +i/) UI=0

(L i_ -_) U: = 0

(3)

i_x/-1

As the operator L is real, it follows that U._ is the

complex conjugate of UI. Hence, the four linearly inde-

pendent solutions of Eq. (3) can be obtained by finding

the real and imaginary parts of the two linearly inde-
pendent solutions of

(L+i/) U-O (4)

If we restrict our attention to loadings of the type such

that the vertical resultant load R is a constant, the prin-

cipal quantities of interest are

R/2ra U
= cotN_ sin-_,/, a

No E

R/2ra 1 dU

sin=6 a d6

M_-- D (_-_-_ + "Vc°tg' )a

v + V cot q_-&-

(l +v_
v= \_] u +

R l+v

9_r Eh

×[eotq,-sin4, ln] tan_-_--] 4- v0 sin

1 (d___ ) Rl+vw= _ + Ucot6 2rr Eh

X (1 +cos_ln ta2-----_ )+v0eos_

Finally, if a new dependent variable z, where

z = Usin_

is expressed as a function of a new independent variable
(x), where

x = sin _ q,

we find that Eq. (4) becomes

x(1--x) d'_z x dz (1 7i/)dx _ 2 dx + z = 0 (5)

If the two linearly independent solutions of Eq. (5) arc

z_ = ¢_ + i _= z_ = _p_+ i g,,

where ¢_, _a, _, _p_are real functions of x, the principal
quantities of interest become

EahVsin 'b = Cl(F_'l 1I 2p2@2) + (72(11¢5 -- 2p21pl)

+ c,_(,,¢:,-t 2/-¢,) + c,(,4,, - 2p=¢_)

Usin¢ =z=C_I+C2_._ + C:_a + C_4

o 0-
aN_ II(R + )-2xdZeos4_]= x _ z cos 4 dx

v sin _ = z + -_ Eh

X (cos_ -- xln Itan _ !)+ t)o X

2
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2 dz

w = k-_-d--;xcos 4,

--6(1--v_) a 2
h_

R 1 4-v(l+cos4,lnItan_[)Par Eh

+ v0 cos 4'

Me (d¢1 1-v_)c-_4 = (_c, - 2p_-c_)\ dx -_

+ (vC2 + 2p2C_)\dx 2 x/

\dx 2

-6 (1 - ,_) a_
2 e_-_ = _C' -- 2P"C"I _ _1_--

However, before we can proceed with the analysis, let us

formulate the solutions of Eq. (5).

III. THE SOLUTIONS OF THE HYPERGEOMETRIC EQUATION FOR v = 0

As usually presented, the Hypergeometric Equation is
written in Gauss' form

x (1 -- x) d2y dy+ [y - ( a + fl + l ) x] -_-_x- aBy = O

In the above application, we have

./=0

i 1/5_ = - "i + -g -_ + 2i°_

fl = 4 2 + 2ie2

Hence, let us consider the solution of

x (1 -- x) d'_y dy-(_+_+l)x_- a_y=0

(6)

in the neighborhood of x = 0. If we assume

y = _ A_ x "÷_
n=O

Eq. (6) becomes

Aos(s-1) x-_ + _-_ x_ {A.+_ (n + s) (n+s+ 1)

-A.(n+s+a)(n+s+B)}=O

In order that A0 --/: 0, we must choose s = 0, 1, and take

A.+_=A. (n+s+a)(n+s+B) (n=0,1,2,. .... )
(n+ s) (n + s+ 1)

Apparently, as no solution exists for s = 0, A0 =/=0, we
find s = 1,

A.+I=A_q. (n = 0, 1, 2,-...)

where

(n+l+a)(n+l+/3)
q_ = (n + l) (n + 2)

If we arbitrarily choose Ao = 1, the first solution of Eq.
(6) can be written as

r/= u_ (x)

u_(x) =x _]A.x _
71=0

3
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where

An=qoq_q=, ..... q,_, (n/>l)

that is,

u, (x) = x {1 + qox + qo q, x _ + ....

+ qoq, "'" qn-, x" + "-'}

(7)

With the first solution so defined, let the second solution
be taken in the form

y=Cu, Inx+ _ B.x"
n=o

Hence, Eq. (6) becomes

(C--aflBo) + _ x"'(B,+2(n+l)(n+2)
_-0

- B.+x (n + l + a) (n + l + fl)+ CA. [(2n + 3) q.

-- (n + 1 + a) -(n+ 1 +fl)]} =0

As the coefficient of each term x" must vanish, we obtain

C
B0--

B.+z = B.+,qn--Cp.A. (n=0,1,2, "'")

where

(2n+3)q.-- (n+l +ct)-- (n+l+t3)
P"= (n+ 1) (n+2)

Thus, it follows that

Bn+2 = A.+I _B1 - C

and

P...Z+ P_.L
q,, ql

qn /)
- 0,1, "")

1y= Blul+C -_+u, lnx

-- __.A.+,(P° + _.P2.+ .... +P") }_:o \qo q, _ x"+2

However, as both B,, C are arbitrary, it is evident that

we have constructed the general solution of Eq. (6) in

attempting to find the second solution. Hence, let us

formally set B, = 0 and write the second solution as

y=u (x)

where

1
u._ (x) = ullnx + --

aB

- x_ _-" A,._ ( P°
, -o \ qo

\

ql q./
X n

In terms of ct, fl defined earlier, we find

(n _ + 3n/2 + 1/4) - ip"/2
q" = (n -4- 1) (n + 2)

P..2_"= 2 _'. n + 3/2
qn l.(n+ 1) (n+2)

(n + 3/4) ( n2 + 3n/2 + 1/4)

(n _-+ 3n/2 + 1/4) _ + (p_/2) _-)

(n + 3/4)
- iP_ (n _ + 3n/2 + 114)-_ + (p_f2) _

Hence, if we take

A, = a,_ + ia,

= b. + i/3.

where a,, a,, ft,, b,, are real, then, writing

ul = p, + i¢..

u_ = _ + i_,

leads to

_ = x _ a.x" (9-a)
_1=0

tp., =x _ a.x" (9-b)
n=O

1 x _ ___ bnx n (9-c)
_:_ = _ In x p_ + 1/4 ,_o

2p" x _ __. fl.x" (9-d)
_4 = _,,lnx+ p4 + 1/4 n:o

As u_, u__satisfy Eq. (6) by definition, the functions ¢,, qJ2,

tp:_,_, must satisfy the following differential equations:

x (1 - x) -----
dx _

x dqJ, + 1
2 d-_- -4 ( ¢' - 2P_¢" ) = 0 (10-a)

d2tpz
x (1 - x) dx 2

x dq,2 + 152 dx -T + = 0 (10-b)

x(1 - x) d_¢:_
dx 2

x dq_:, 1
2 dx + -4- ( q_:'- 202¢' ) = 0 (10-c)

4
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x (1 - x) d2¢--+
dx 2

x d4,, + 1
2 dx _ (¢' + 2P2v/3)= 0 (10-d)

In order to more readily evaluate the constants an, an,

b., fl_, let us define

q. = Nn + iM. ; N., Mn--real

P._.2_o + P...2__ + .... + P._z."= p. + iQ. ; P., Q.--real
q0 qt qn

Hence, the equations for determining a., a., b.,/3, become

a0------ 1

ann1 = a.N. - an M.

ctn+t = an Mn + an N.

bn=a.+,P.-a.+,Q.

j3n= a,,+,.Q,.,++ a.+,. e,+

As an example of

1
No = --g-

11
N1 = _-

29
Nz = 4"-8

M0 = - 2_:_
4

p2

M1 - 12

p2
M_ = 24

,0-
7

P'= 3

_o=0

(ll-a)
(n = 0,1,2, ....)

(n-b)

(12-a)
(n =o, 1,2, ....)

(12-b)

the above formulation, we have

1)p' + 1/4

3/2 77/2

Q° = p' + 1/4

1 --

1

al=- _-

p+ + 1/4 p* + 121/4

3p 2

10 (1 + 37/4p')

pz (1 + 1/4p')(1 + 121/4p')

an= 4----8 1- 4p ]

'+o= -(+)_

al = -p2/4

As a final calculation, let us show that the power series

given by Eq. (7) and (8) are absolutely, and hence uni-

formly, convergent in the range 0 _ x _< 1). In order to

do this, consider the series

This series can be shown to be convergent by Raabe's test

(Ref. 2), if a value of a > 1 can be found such that

]A,,,I --1+ o-+ 0(1) asn.__>+n

or, alternatively, that

LI. [(1+ II =oIAn+,.l_l_
'r_

However, as

IA.I_ 1

r_ - _ = i(n2

(n + 1) (n + 2)

+ 3n/2 + 1/4) 2 + (p2/2)2

=1+ 31__2+n0 (nl-_)

it is clear that the first solution u_ (x) is absolutely con-

vergent for x = 1, and hence is both absolutely and

uniformly convergent in the range O _ x _ 1.

The absolute convergence of the power series constit-

uent of the second solution follows from the same property

of the first solution if one recognizes that the nth term in

the second series is essentially that of the first series multi-

plied by the nth partial sequence Pn + i Qn, If the abso-
lute value of this sequence can be shown to be bounded,

the absolute convergence of the second series follows

directly. However, as

and

IPn+iQ.I_[PnI+IQnl

le+t=21E,:0

IPnl= P" ,=_o

(r + S/2)(r+l)(r+2)

(r + 3/4)(r 2 + 3r/2 + 1/4) ], ](,2÷ 3r/2 + _/_ 7-T_

(r + 3/4)

(r +-+ 3r/2 + 1/4) 2 + (p2/2)2

5
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it can be shown that

L{ r_2 [- (n + 8/4) (n _ + 3n/2 + 1/4)L(n 2 + 3n/2 -t- 1/4) 2 ÷ (p2/2)2
n-)_.o

(n + 1)(n + 2)
=- 8/4

n3 (n 2 + 3n/2 + 1/4) 2 + (p_/2) 2 = 1

Hence, by the Comparison Test with the series _ l/n 2,

_, 1/n 3 respectively, the partial sequences P,(n),Q,(n)

are shown to be convergent. Plots of such sequences are

given in Fig. 2 and 3.

Q.

0
0

p2=650

p2=900

p2= 400

Lzgp2=200

Ip2=lO0

10 2O

/7

Fig. 2. Partial sequence P.(n}

5O

0.8
I

,2=400

_2=650

p2=900

o I I I I 1
0 I0 20 50

//

Fig. 3. Partial sequence O.(n)

i_

6
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IV. CALCULATION OF _ (x), _,_(x), _3 (x), _,, (x)

In attempting to evaluate the above series representa-

tion for ¢x, ¢.,, ¢3, ¢,, the two principal difficulties that
must be remedied are truncation and round-off error. The

truncation error may be overcome by simply retaining a

relatively large number of terms in the expansions. This

should pose no difficulty if the calculations are to be

performed on a digital computer. However, this procedure

contributes to the round-off error, as the nth term in the

series cannot be computed directly, but must be computed

from the (n-1)th term by means of Eq. (11) and (12).

Hence, there will be a progressive error due to rounding

off to the number of significant figures that can be carried.

In order to evaluate the functions _1, """ , _, and, at
the same time, obtain some estimate of the error in the

calculations, the absolute value of A_ given by

]a,l--vt-a'+, a__

was computed on an IBM 7090 for several values of the

parameter p up to n --- 49. These values are presented in

Fig. 4, and indicate that, as p increases, both the numeri-

cal value of I A, [ and the value of n at which the value

of [A, [ is a maximum, increase.

1,0

0,8

0.6

0.4

!

0.2

0
0

p

/ \ /-- _×lo-r .

,4 /
/, / /
'1 / b/ 1 I I

10 20 30 40 50

Fig. 4. Variation of power series coefficient
with index (n)

From the form of I q_ [it can be argued that ]q" I < 1

for (o/n) < < 1. Hence, the function I A,(n) I is a mono-
tone decreasing function after reaching a maximum, say

IAs [. This suggests that a rough estimate of error intro-
duced by truncating the series

can be obtained by noting that, as

n=N n=_

and

N-I

E X n --

_:0

one obtains

1 -- X N _

2_. Xn--

i -- x ,,:o

X _

_:N {A"{x"<IAN[ 1--x

Thus, if we write

¢1 (x) = x _-]_a.x" + a.x"
n=O n:N

and note that l a. I _ I A. l, it follows that

Ipl -- x Zanx rl X

n=o = •

X _ --

a. lx"<x___iA.[x"

_x"
,,_-o

Similar relations can be written for the remaining func-

tions. It is necessary only to estimate the limit of the

sequence P, + i Q, as n_ o0.

On the other hand, the error due to round-off cannot

be handled quite so easily. It is possible, however, to

obtain a check on this process by comparing the functions
_b_, _ with known functions whose nth terms can be

computed directly. To this end, we note that, for (1 - x)

_- 1, Eq, (5) becomes a form of Bessel's equation giving

rise to the Kelvin functions. Specifically, it can be shown
that

p2 ¢1 (x) _ _ bei' V/-2p _"x

p2 ¢2 (x) _ k/2p 2x ber' _/2p 2x

for small values of x. The functions ¢:_, q_, do not appear

to have such a simple representation in terms of remain-

ing Kelvin functions. The results of calculating the func-

tions ¢_, ¢_ by retaining 50 terms in the series is presented

in Fig. 5 and 6 along with the appropriate Kelvin function

7
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for comparison. It is apparent that the error is negligible

at such small values of the argument (x). Figures 7 and 8
present the results of similar ealculations for the functions

F3, F_, where

F3 = x 2 _.b.x '_
TI=0

%
v

%

Fig. 5.

p2=

6 8 10

p2 x = (p sln _)2

Power series _1

16

F4 ----x_-_fl, x _
n=0

Finally, the functions q_l, q_2,F_, F, are presented over

a larger range of x in Fig. 9-18 for several values of the

parameter p, where, again, 50 terms in the series have
been retained.

20

15--

I0--

p2 = 200

J

-2o I v t i

I-_p2:900

pZx beiZ 2p_-_x

I0 15

p2 x : (p sin _)Z

20 25

Fig. 6. Power series _'2

8



JPL TECHNICAL REPORT NO. 32-416

v

_4

45

4O

25

20

10

0
0

p 2= 900

I I
4 6 8

p2 X =( p sin_ )2

Fig. 7. Power series F:;

I
i2

25

2O

-15
0

0.08

0.04

-0,04

p2= 100

p2:

I I
2 4 6 8

p2x--(p sin_)2

Fig. 8. Power series F4

900

I
10 12 14

p2 = 100

0.320
1 1 I I

0,02 0.04 0.06 008 0,10

X =sin2_

Fig. 9. Power series _l(x)

t
0.12

9
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p2=200

I I I I I
0.02 0,04 0.06 0.08 0,10

x = sin 2

Fig. 10. Power series _=(x)

p2= 400

2_4

2.0 m

1.6 --

1.2 --

0.8 --

0.4 --

0 --

-0_4

-0.8 --

-I.0
0

p2=400

_ p2=lO0

p2 = 200

t I I .t I
0.02 0.04 0.06 008 010

x = sin z

Fig. 11. Power series F_(x)

I0
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3.6

3.2 --

2.8--

2.4--

2,0 --

1.6--

12--

0.8--

0.4--

0--

-0.4
0

2=200

Sp2=_ 100

1 t t I I
0.02 0_04 0.06 0.08 0.10

X = sin 2

Fig. 12. Power series F4(x)

80

7O

60

50

4O

8

N 30

F3( x

20

-10
025 030 035 0.40 045 0,50

x = sin2_

Fig. 13. Power series F3, F, (p2 = 100)

1t
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t60q

140(

1200

1000

800
-F'

o 6OO

P_
%

40O

200 (x)

-200

I I l
0.40 0.45 0.50

x =sln2_

Fig. 14. Power series F_, F4 (p2 = 200)

12

0
0

\

24

2O

2 X 104

0 --

-2X104 --

-4X104 --

-6X104 --

-SX104 --

-10Xl04 --

-12XI04
0.25

16

F4(x

0.50 0,35 0.40 0.45

X =sin2_

Fig. 15. Power series F3, F4 (p_ = 400)

0,50

I J I
0.30 035 0,40 045 050

X= sin2 <_

Fig. 16. Power series _1, _2 (p_ = 100)
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400

300

200

025 030 035 040 045 0 50

x = sin2_

Fig. ]7. Power series _1, _., (p2 = 200)

80001

4000

0
0

Q..

-4OOO

-8000

-12,000

-16,000

#2(X

-20,000

-24,000

28ooo I l t t
025 030 035 040 0.45

x=sin2¢

Fig. '18. Power series _, _,_ (p-_ = 400)

050

13
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V. APPLICATION: INFLUENCE COEFFICIENTS

As an application of the above results, let us consider

the problem of determining the Influence Coefficients,

i.e., the deflection 8 and rotation V due to a unit edge

shear H or bending moment Mb applied at the edge 4' --- 4'b

(see Fig. 19). In order that the shear be well behaved at

the apex, let us choose

z = C, _ + C._ q,_ C:_,C4 ---- 0

Thus, we wish to determine 3, V, where

=(wsin4-- vcos4) l_ _b

_ sin 24'_
Eh t ra_l l+v 1C, [_ dx 2x _

"k dx 2x

1
V=

Eah sin 6_

subject to the condition that

Me (4' = 4'b) = Mb (Q# sin 4' - N_ cos 4') I _b=_bb _- H

That is,

(ff-_ + _)1 _=_b =all (13)

C1 v + 2P2 a x / -- _ _ _b

1-v 312x (v_, -- 2p2¢,) ¢=¢b

_ -6(1 - _)a _ _Ib
2 C08 4'b

(14)

if we define the matrix A in the usual form

A _ F all a12 1[.a2t a22

I4

h

M4,

lit

N_, v

cL

Fig. 19. Sign convention

where

¢, (x_)
O11 --

Xb

¢_ (xb)
alz _

xb

]a_x= v + 2P_dx ] _x _¢_+ 2P_¢_) _

ax / _ _=_'_

Equations (13) and (14) can be represented as

A C: = -6 (1 -- v)a 2 Mb
• h_ cos4'i

In presenting the results, it is convenient to separate

the loading into two parts. For the shear loading H only,
we have

aH

C1 = _ (122

aH

C2 = -- -_ a21

I A ] Eh _ C _ °[" dtpd dt_z 2sin24'b aH -_-_P'\Tx + dx /

+ Cz-d-x'x - ¢' + ¢"_+¢' dx /

ll -- _-- )p2 12
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VD F q!
IA Zsin _ - L - _a" H g'l--_ -d_-Jl _b

while, for the bending moment Mb only, we have

C1 z

C2

]AI D_

6(1--v -_) a _ Mb a12

h 2 cos ¢b I A I

--6 (1 -- vz) a2 Mb all
h'-' cos _b I A [

d¢1

[ A I sin 2fib 2p 2aMb ( 'p_ + tp,/) _:_

These coefficients were computed for several values of the

parameter p and are presented in Fig. 20 and 21. The

values of the opening angles that were chosen correspond

to the range intermediate between shallow shell theory

and quasi-cylindrical theory. The data have been normal-

1.02

100

S RFF 5;(p2=400)

098 _ p2= 400

0.94 " _ REF. 3;( /02 = 200)

Ot REF. 5;(p2=100)

0.92

o.9 I t I I I
0.25 0.30 035 0 40 045 050

x = sin 2 _

Fig. 20. Influence coefficients (v = 0.30)

ized by dividing by the corresponding quasi-cylindrical
value. A further comparison is made with the shallow shell

theory of Ref. 3.

In performing the calculations, the values of the deriva-

tives of ¢1, ¢..,were estimated by means of the Three Point

formula ( see Ref. 4) :

,/__ 1 [_(x+a)__(x_a)]
dx 2±

where Lxwas taken to be 0.001. It was found that values

obtained from this formula differed insignificantly from

those obtained using a Five or Seven Point formula.

.c 1.03

._ eq

<
I
,, 1.02 <

1.00 I J I I t

<

1.03

<

1.02 <

1.01

1,00

_""_ REF 3' (p2 tO0) 2

p =I00

I ] I I I
0,25 0.30 0.35 0,40 0.45 0.50

x " sin 2

Fig. 21. Influence coefficients (u = 0.30)
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VI. APPLICATION: CONCENTRATED LOAD

As a further application of the above results, let us

consider the problem of detcrmining the stresses and de-

flections due to a concentrated force B applied at the apex

(see Fig. 19). The boundary condition at the outer edge
4' = 4'b will be left arbitrary for tile present. With

z = C1 _1 + C_ ¢.., + C,_ ¢3 + C, ¢4

the constants C3, C4 can be determined independently of

CI, C., by analyzing the behavior of the stresscs, bending

moments and deflections in the neighborhood of the apex.
As

X 2

¢,1(x) = x + -ff + O(x _)

d¢l x
dx (x) = 1 +-_-_ O(x 2)

p_ X2 P2 X,_

_ (x) -- 4 --8-- + O(x')

d¢_ _ !, _ x 30_"x _
d--7--(x) = 2 S + O(x3)

1

_ (x) - p, + ¼ + alx_lnx- floX _

- box z + O(x 3;x31nx)

da/_
d-"-x"(x) = lnx + 1 + (al - 2bo) x

+ 2a_ x In x + O (x _; x 2 In x)

205 + a_ x_ In x - flo x 2 + O(x'_; x '_In x)
¢.(x) - o_ +

dr,
(x) = (a_--2flo) x+2alxlnx+ O(x 2;x zlnx)

it follows that

I. 1/x [(4p4_v)C_ + 2p_(l +v)C,]EahV = V_ p, + ¼

+ (vC_ - 20 _ C,) In x

+ (vC_- 2p_Cz) + O(x;xlnx)}

I(R 2o2C,-C3)aN4' = -- x -_- + oi- % _ -- C3 In x

- C_+ p,__----------..._/4(C_-2o2C,) +O(x;x!nx)

l(R 2o_C4 -Ca ) _C31nxaN° = x -_ + p, ÷ ¼

F 1/2 _.-, C_]+ Lp.-r-4-_ ,_ - 2p_c.) - 2c_ -

+ O(x;xlnx)

l+v[1 [R 2p'-'C,-C3]v =--gff-t_l_N-_ + ,' +

+ ,_xln x (Cs -- _-----)

+vr'_FEhv°[_l+v + --_('n _ - @) + _'3}

+ 0 (x 3/2; x 3/2 In x)

Ehw=(2C3 1+_2 _-)lnx

2,r ( 1 - In 2) + Ehvo

+ O(x;xlnx)

-6(1-v _)a S Me

h _ cos 4,

=- 1-v 1/x [C:_(4p,_v) + 2oo.C,(l +v)]
2 o4 + 1A

l+v
+ _ (vCa - 20 z C,) lnx

[ l+v (vC _2p2C2)]+ (_c_-2p_c.) +---T-

+ O(x;xlnx)

--6 (1 -- v_) a _ MO

h_ cos 4'

1-v I/x [C3(4o'--v) +2pzC4(1 4-v)]
2 p4+_A

1 +v (vC_ C_)lnx+ _ -2t '_

[ l+v (vC_-2o2C2)]+ _(_c3 - 9...-c.) + --g--

+ O(x;xlnx)

t6
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Apparently, one may modify the singularity at the apex

by choosing

C_ (4 o_ -- _,) + 2p-_ C, (1 + v) =0

R 1

._¥ + or + ;-------T(2p_ c, - c:,) = 0

that is, by requiring

a(l+v)
C3 = 8_-

o" - v/4 R
(-]4 -- -- --

p2 4.,r

Thus, the form of the solution in the neighborhood of the

apex is

N,---> iq(1-iSra v) Inx- iq(1-_4_a v)ln4,

No--> R (1 + v) lnx- R (1 + v) In4,
87ra 4-rra

Rp'-'[2C_ Et, vo 1 +v (l_ln4)]
w---> Eh _ _ iqp 2 ffrrp2

R(l+v) lnx= R (1 + v) In4,
M_ --_ 8_ 4-r

R (1 + V),ln @Mo-* R 11 + v) lnx _ -
8_ 4_

Finally, let us determine the constants C_, C: to corre-

spond to an unrestrained edge at 4' = 4't,; i.e., such that

It, M4' _ O. This set of conditions requires that

4

-2

-4

J /
/
!

-,ol 1 1 I [ I .... L____I
0.02 0.04 0.06 0.08 010 0.12

X =sin2_

Fig. 22. Direct strains (p-" = 100) (v = 0.30)

The values of 2C_/Ro-" are to be compared with the shal-

low shell theory of Reissner (Ref. 5) in which the value

of the coefficient is exactly 1/4.

R
-- A-1

_%
11 1+_

cos4'b+ 2--

2x ¢:_ + " dx

where the elements of the matrix A are given in Section V. Table 1. Concentrated load constants

Calculation of the constants C_, C_ was performed for

the same values of the parameters that were used in

Section V. The values of the derivatives of the functions

¢,,. .... , ¢, were estimated, as before, by means of the

Three Point formula. The resulting values for C_, C_ are

presented in Table 1.

Of particular significance is the value of the radial

deflection under the load. From the expansion in the

neighborhood of the apex, it follows that

Ra ,/311 - v'-')12C' '_ v,._0
w(O) = -g_,_ \ Rp-'/

p_ xl@_) 2C_/Rp _ 2C,,[Rp _

100

200

400

0.250

0.330

0.410

0.499

0.250

0.330

0.410

0.499

0,250

0.330

0.410

0.499

0.255

0.255

0.255

0.255

0.253

0.253

0.253

0.253

0.252

0.252

0.252

0,252

--0.648

--0.646

---0.645

--0.645

--0.757

--0.757

--0.757

--0.757

--0.868

--0.868

--0.868

--0.868

1"7
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As a further comparison, the direct component of the

meridional and circumferential strain given by

E_o ) _ (N_ - _ No)
Eh

co(o) = (No - ,,N_,)
Eh

is presented in Fig. 22, along with similar relations from

Ref. 5 and 6. For both of the latter references, the strain

relations being presented for camparison were computed

for the ease of no edge restraint.

VII. DISCUSSION

Of particular importance in the above work is the

numerical evaluation of the functions _1, ¢._,,_, ¢,, as these
form the basis on which to evahmte the relative merits of

the various approximate theories. The only major difficulty

seems to be the round-off error. Apparently, if a computa-

tion procedure could be constructed wherein the nth term
in the series could be evaluated directly, this problem

could be partially avoided. Unfortunately, there seems

to be no solution to this difficulty. However, an alternate

scheme can be proposed, and might be pursued at a later

date, for comparison with the one used above. If one
defines

q, = [ q_ ] e -i'.

where

(p2/2)

tan 0,, - (n _ 4- 3n/2 + l/,_

then, it follows that

A,,=]QoIIQ, I]Q_[ ...... I q,-, [

Xexp[-i(Oo+8, + ..... +0,,_,)]

and hence

a,= Iqollq, [ ...... [q,, Icos(00 + _, 4-... 4- O,,-0

(.>_l)

_* = - lqol [q,l ..... Iq--' Isin( °0+ 0, 4- .... + 0n-l)

(n_l)

It can be argued that this method is not devoid of

round-off error, but it does offer a more direct compu-

tational procedure.

Ignoring the possibility of numerical error, it seems

evident from the examples presented in this Report that

the approximate shell theories are certainly adequate to

describe the stresses and displacements of thin shells.

However, Fig. 20 indicates that a better approximation

than an equivalent cylindrical shell should be made for
engineering analyses for the horizontal deflection due to

an edge shear H. Fortunately, shallow shell theory seems

to give adequate agreement for the range of parameters

investigated, so that one does not have to look too far.

Finally, it should be noted that the solution of Reissner

(Ref. 5) in the neighborhood of a concentrated load

shows excellent agreement with the analysis in Section VI.

This is of particular importance, since shallow shell

theory is considerably easier to use than the analysis in

this Report. The only discrepancy exists in the immediate

neighborhood of the apex where the stresses derived from

the present analysis have a logarithmic singularity. This

is convenient, as one might argue intuitively that the
stress under the load R should be tensile.

As a final comparison, the nature of the singularity is

presented in Table 2 for the present analysis and Ref. 5

and 6. It can be seen from Fig. 22 that the discrepancy

exists over a negligibly small region of space near the

apex where the solution would not be expected to be

valid in any case.

18
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Table 2. Comparison of several theories concerning the nature of the

singularity under a concentrated load

Present analysis

Ref. 5 (Relssner}

Ref. 6 (Author}

N_

-- 8-_ (I -_:)

vR

4_a In_

N o

_R

47ra In_

R (1 -_- V.)ln_6
4T

Rfl + v)
4_- 'ln_

R (1 -I- L) ln _
4_

Ra _,./"--_"_'-_2 F 2C_

R

27rEh In_
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